
Genome Biology 2008, 9:S4

Open Access2008Mostafaviet al.Volume 9, Suppl 1, Article S4Method
GeneMANIA: a real-time multiple association network integration
algorithm for predicting gene function
Sara Mostafavi*, Debajyoti Ray†, David Warde-Farley*, Chris Grouios‡ and
Quaid Morris*‡§

Addresses: *Department of Computer Science, University of Toronto, King's College Road, Toronto, ON, M5S 3G4, Canada. †Gatsby
Computational Neuroscience Unit, London WC1N 3AR, UK. ‡Department of Molecular and Medical Genetics, University of Toronto, King's
College Road, Toronto, ON, M5S 1A8, Canada. §Banting and Best Department of Medical Research, University of Toronto, College Street,
Toronto, ON, M5G 1L6, Canada.

Correspondence: Quaid Morris. Email: quaid.morris@utoronto.ca

© 2008 Mostafavi et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Most successful computational approaches for protein function prediction integrate
multiple genomics and proteomics data sources to make inferences about the function of unknown
proteins. The most accurate of these algorithms have long running times, making them unsuitable
for real-time protein function prediction in large genomes. As a result, the predictions of these
algorithms are stored in static databases that can easily become outdated. We propose a new
algorithm, GeneMANIA, that is as accurate as the leading methods, while capable of predicting
protein function in real-time.

Results: We use a fast heuristic algorithm, derived from ridge regression, to integrate multiple
functional association networks and predict gene function from a single process-specific network
using label propagation. Our algorithm is efficient enough to be deployed on a modern webserver
and is as accurate as, or more so than, the leading methods on the MouseFunc I benchmark and a
new yeast function prediction benchmark; it is robust to redundant and irrelevant data and
requires, on average, less than ten seconds of computation time on tasks from these benchmarks.

Conclusion: GeneMANIA is fast enough to predict gene function on-the-fly while achieving state-
of-the-art accuracy. A prototype version of a GeneMANIA-based webserver is available at http://
morrislab.med.utoronto.ca/prototype.

Introduction
The vast amount and increasing variety of genomic and pro-
teomic data generated for model organisms creates an oppor-
tunity for in silico prediction of gene function through
extrapolation of the functional properties of known genes.
Genes with similar patterns of expression [1], synthetic

lethality [2], or chemical sensitivity [3] often have similar
functions. Additionally, function tends to be shared among
genes whose gene products interact physically [4], are part of
the same complex [5], or have similar three-dimensional
structures [6]. Computational analyses have also revealed
shared function among genes with similar phylogenetic pro-

Published: 27 June 2008

Genome Biology 2008, 9:S4

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2008/9/S1/S4

http://www.biomedcentral.com/info/about/charter/
http://genomebiology.com/2008/9/S1/S4
http://creativecommons.org/licenses/by/2.0
http://morrislab.med.utoronto.ca/prototype
http://morrislab.med.utoronto.ca/prototype

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.2

files [7] or with shared protein domains [8]. More accurate
predictions can be made by combining multiple heterogene-
ous sources of genomic and proteomic data [9]. Collectively,
these observations have led to functional categorization of a
number of previously uncharacterized genes using the so-
called 'guilt-by-association' principle [10-12].

Algorithms that predict gene function using the guilt-by-asso-
ciation principle do so by extending a 'seed list' of genes
known to have the given function by adding other genes
highly associated with the seed list in one or more genomic
and proteomic data sources. These algorithms typically com-
pute a 'functional association network' to represent each
dataset; in this network the nodes correspond to genes or pro-
teins and the undirected links (or edges) are weighted accord-
ing to evidence of co-functionality implied by the data source.
Types of functional association networks include kernels used
by support vector machines (SVMs) [9], functional linkage
networks [13], and protein-protein linkage maps [14]. Indi-
vidual functional association networks are often combined to
generate a composite functional association network that
summarizes all of the evidence of co-functionality. This net-
work is then used as input to an algorithm that scores each
gene based on its proximity to the genes in the seed list. When
employed on multiple complementary data sources, these
algorithms can accurately predict previously annotated gene
functions in blind tests [15], suggesting that their predictions
for unannotated genes are also quite accurate.

Despite these successes, guilt-by-association algorithms have
yet to achieve widespread use in gene annotation or as
sources of new hypotheses about gene function; to do so, their
predictions need to become more accessible, more accurate,
and more regularly updated. In principle, all available data
should be used when generating hypotheses about gene func-
tion; however, compiling a large number of heterogeneous
data sources, generating functional association networks to
represent these sources, and then mapping gene identifiers
among the networks is a complex and onerous task that is
best handled by specialists. Centrally managed web-based
'prediction servers' are an efficient strategy to ensure that cas-
ual users have access to the best available predictions.

However, maintaining accurate and up-to-date prediction
servers can be computationally prohibitive. Though a large
number of algorithms have been developed to predict the
function of unannotated genes by combining heterogeneous
data sources (see [16] for a recent review), the most accurate
of these algorithms have long running times, which can range
from minutes [17] to hours [9] on yeast. Larger mammalian
genomes increase the run time of these algorithms even more.
As such, these algorithms cannot feasibly be run online and
instead their predictions are made offline based on sets of
pre-defined seed lists derived, for example, from Gene Ontol-
ogy (GO) annotations [18]. However, because new data and
annotations are being generated at a rapid rate, maintaining

an up-to-date database of the best available predictions for all
possible functions requires substantial and potentially una-
vailable computational resources.

Due to this limitation, most prediction servers sacrifice accu-
racy for speed by relying on a single, or a small number of,
pre-computed composite functional association networks
and using simple heuristics to score genes based on a given
seed list (for example, see [13,14,19]). While the scoring heu-
ristics are fast enough to provide online predictions for arbi-
trary seed lists, we will show that their predictions are much
less accurate than more advanced methods. Furthermore, by
using a single pre-computed network, these servers do not
take advantage of the fact that different data sources are more
relevant for different categories of gene function [2,9] and are
not extensible to new or user-supplied data sources.

Here we demonstrate that it is not necessary to surrender
either accuracy or flexibility when building a prediction
server by showing that GeneMANIA (Multiple Association
Network Integration Algorithm) can, in seconds, generate
genome-wide predictions that achieve state-of-the-art accu-
racy on arbitrary seed gene lists without relying on a pre-
specified association network. We have achieved this goal
through a series of algorithmic and technical advances that
we have encapsulated in a new software package. With Gene-
MANIA, it is no longer necessary to maintain lists of in silico
predictions of gene function because they can be recomputed
as needed.

Background
Automated methods for predicting gene and protein
function
Many algorithms for predicting gene function use a func-
tional association network as a common representation of
evidence of co-functionality for heterogeneous datasets. In
this representation, nodes represent genes or proteins and
the undirected edges (or links) between these nodes are
weighted according to the evidence for co-functionality of the
genes implied by the particular datasets. There are various
techniques for deriving these weights depending on the
source of data and it is still unclear how best to extract evi-
dence of co-functionality (see, for example, [20,21]); as such
we here use a single method to calculate these weights (see
Materials and methods for details). Here, we assume that all
of the association weights are positive.

Predicting gene function from functional association
networks
Following Lanckriet and coworkers [9], we pose the problem
of predicting gene function as a binary classification problem
and attempt to solve the problem of integrating multiple het-
erogeneous input data sources by assigning each functional
association network derived from these data sources a posi-
tive weight that reflects its usefulness in predicting a given

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.3

Genome Biology 2008, 9:S4

function of interest. Once these weights are calculated, we
construct a function-specific association network by taking
the weighted average of the individual association networks.
In contrast to prior work [9,17] in which the weights and dis-
criminant values were optimized simultaneously using the
same objective function, we use a separate objective function
to fit the weights, leading to a simpler optimization problem
and a substantial reduction in run time.

We predict gene function from the composite network using
a variation of the Gaussian field label propagation algorithm
[22,23] that we adopted to be more suitable for unbalanced
classification problems like gene function prediction. Label
propagation algorithms, like most function prediction algo-
rithms, assign a score to each node in the network, called the
'discriminant value', that reflects the computed degree of
association that the node has to the seed list defining the
given function. This value can be thresholded to make predic-
tions. While there are a large variety of label propagation
algorithms (for example, those based on functional flow
[24,25] or Markov random fields [26]), our interest in the
Gaussian field algorithm stems from the fact that it has a well-
defined solution, it is derived from a principled framework,
and it has recently been shown to perform as well as SVMs on
gene function prediction tasks [17]. SVMs had previously
been shown to be among the best algorithms for predicting
gene function [27,28].

Results
The GeneMANIA algorithm consists of two parts: an algo-
rithm, based on linear regression, for calculating a single,
composite functional association network from multiple net-
works derived from different genomic or proteomic data
sources; and a label propagation algorithm for predicting
gene function given this composite network. Below we
describe the two parts of the GeneMANIA algorithm individ-
ually. We evaluate GeneMANIA on yeast benchmarks as well
as the MouseFunc I benchmark.

GeneMANIA label propagation
Gaussian field label propagation algorithms for binary classi-
fication take as input an association network, a list of nodes
with positive labels, possibly a list of nodes with negative
labels, and initial label bias values. For gene function predic-
tion, each gene is associated with a single node and nodes rep-
resenting genes in the seed list (that is, positive genes) are
assigned an initial label bias value of +1, and those represent-
ing genes that are deemed negative examples are assigned an
initial bias value of -1. In the Results section, we explore a
couple of strategies to defining negative examples; here we
will assume that these examples are provided. GeneMANIA
label propagation differs from [22] in how we assign the label
bias to unlabeled genes, which are those that appear neither
on the seed list nor among the negative examples.

Given this input, label propagation algorithms assign a discri-
minant value to each node. These discriminant values are
determined by letting the initial label bias of nodes propagate
through the association network to nearby nodes. To account
for potential noise in the initial labelings, GeneMANIA label
propagation, like [22], allows the discriminant values
assigned to positively and negatively labeled nodes to deviate
from their initial biases.

Our label propagation algorithm assigns discriminant values

by finding those that minimize a cost function that penalizes

both differences between the discriminant values of neigh-

boring nodes in the network as well as differences between

the discriminant values of nodes and their label bias (see

Materials and methods for details). This cost function allows

information about the node labels to propagate through the

network to affect the discriminant values of genes that are not

directly connected to the seed list. As such, the initial bias val-

ues of labeled and unlabeled nodes are important in deter-

mining their discriminant values and those of their

neighbors; to account for the fact that only a small portion of

the genes are expected to be labeled as positive, in the Gene-

MANIA algorithm we set the initial bias of unlabeled nodes to

be the average bias of the labeled nodes: , where n+ is

the number of positive and n- is the number of negative exam-

ples.

When the number of positively and negatively labeled genes
is equal, the GeneMANIA label propagation algorithm is
identical to that of Zhou and coworkers [22] (hereafter
ZBLWS), and similar to the original Gaussian field label prop-
agation algorithm [23], since they both assign an initial label
bias of zero to the unlabeled nodes. However, in gene function
prediction problems, the number of positives is almost always
only a very small proportion of the total number of genes and
our method of setting these label biases makes a dramatic
improvement in prediction accuracy in these cases (Figure 1).

Efficient implementation of GeneMANIA label
propagation for large genomes
In GeneMANIA, label propagation on the composite associa-
tion network is the most time-consuming step. Here we
describe how we implemented this algorithm in order make it
more efficient.

The discriminant values resulting from GeneMANIA label
propagation can be calculated by solving a system of linear
equations, y = Af, for f, the vector of discriminant values,
given A, the coefficient matrix (whose derivation from the
association network weights is described in Materials and
methods) and y, the vector of node label biases. While in
principle this system can be easily solved by multiplying the
inverse of the coefficient matrix by y, we employ a conjugate

n n

n n

+ − −
+ + −

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.4

gradient (CG) method to solve this system that makes effi-
cient use of CPU processing time and computer memory
resources, especially for large genomes.

To show why the CG method is well-suited for this problem,
we will briefly describe the algorithm. The CG method itera-
tively improves an estimate, ft, of a solution to the linear sys-
tem as follows: at each iteration t, the current estimate, ft, is
multiplied by the matrix A. If the result of this matrix multi-
plication yt = Aft is equal to y then ft is a correct solution. On
the other hand, if yt does not equal y then the CG method cal-
culates a new estimate, ft+1, based on the difference between
yt and y. Calculating ft+1 requires performing another matrix
multiplication between A and a vector with the same number
of elements as ft. The new estimate, ft+1, is guaranteed to be
more accurate than ft [29] and, starting from a random esti-
mate of f, the CG method is guaranteed to converge to a cor-
rect solution after n iterations, where n is the number of
nodes in the network. In practice, however, the CG method
can converge in many fewer iterations.

By reducing the number, m, of non-zero elements in A, we can
reduce the runtime of the CG method for label propagation.
The runtime of each CG iteration is proportional to m, which
is equal to the number of edges plus the number of nodes in
the functional association network that A represents. Many

types of functional association networks are sparsely con-
nected, and those that are not, such as networks derived from
molecular profiling data, can be made sparse with little
resulting impact on the performance of GeneMANIA (Figure
2). In contrast to the CG method, the run times of standard
methods for solving linear systems, like Gaussian elimina-
tion, depend on the number of potential connections, which
can be orders of magnitude larger than the number of actual
ones.

Using the CG method for label propagation leads to further
time reductions because it is possible to get very close to the
exact solution with only a fraction of the full number of
required iterations. Indeed, we found that for networks with
sizes ranging from 1,000 nodes to 20,000 nodes, on average
less than 20 CG iterations were needed to derive a solution
that is within the computer round-off error of the exact solu-
tion (Figure 3). Because there does not appear to be any rela-
tionship between network size and number of CG iterations
required to reach a solution, in our application, in practice,
the running time of our label propagation algorithm depends
only upon m, in contrast to other methods for solving linear
systems whose runtime in the worst case would depend on
the product of m and n.

Effect of network sparsification on ROC scoresFigure 2
Effect of network sparsification on ROC scores. For various sparsity levels
of GeneMANIA and for the support vector machine (SVM), boxplot
shows the following features of the distribution of the prediction errors as
measured with 1 - area under the receiver operating characteristic (ROC)
curve (1 - AUC): the median (red line), 25% and 75% percentile (blue box),
and outliers of prediction errors more than 1.5 times the interquartile
range away from the median (blue stars). The evaluations are based on 3-
fold cross-validation on 992 GO categories with the Zhang and coworkers
[12] mouse tissue expression data as input. The GeneMANIA experiments
were run by creating an association network from the mouse tissue
expression data where the number of neighbors for each gene is restricted
to N. For example, when the number of neighbors = 5, each gene is
associated with only five other genes. The settings for the SVM
experiments are as described in [12].

5 10 20 50 SVM

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Er
ro

r (
1−

AU
C

)

Minimum # of neighbors

Effect of label bias on ROC scoresFigure 1
Effect of label bias on ROC scores. Bars show the prediction error
measured using 1 - area under the receiver operating characteristic (ROC)
curve (1 - AUC) of GeneMANIA where the label bias of unlabeled genes is
set to zero or average label (that is, k = 0 or k = mean label). The
experiments were run on 400 Gene Ontology (GO) functional classes
using 15 yeast association networks that we created from various
genomics and proteomics data sources (see Materials and methods). The
functional classes are grouped by specificity (defined by number of
annotated genes: 3 to 10, 11 to 30, 31 to 100, 101 to 300). Error bars
depict the standard error on 100 different predictions in each evaluation
category.

3 11 31 101
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Annotations

M
ea

n
Er

ro
r (

1−
AU

C
)

k = mean label
k = 0

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.5

Genome Biology 2008, 9:S4

In summary, to make our algorithm efficient for large
genomes, we use a conjugate gradient-based procedure to
solve for the discriminant values and we sparsify functional
association networks so that only the most informative asso-
ciations are retained. These two changes speed up the label
propagation algorithm by orders of magnitude for large
genomes.

GeneMANIA network integration
Like two recent methods for combining multiple functional
association networks [9,17], GeneMANIA builds a composite
functional association network by taking a weighted average
of the individual functional association networks. However,
unlike these two methods, GeneMANIA optimizes the net-
work weights and calculates the discriminant values sepa-
rately. The advantage of this approach is that unlike the
algorithm described in Tsuda and coworkers [17] (hereafter
TSS), which also uses Gaussian field label propagation, Gen-
eMANIA needs to run the computationally intensive label
propagation only once, whereas TSS runs it multiple times on
different networks while computing the network weights. For
example, on our five network yeast benchmark (described in
Materials and methods) across 400 GO functional categories,
the TSS runs label propagation, on average, 68.8 times per
category.

Our approach to computing network weights was inspired by
recent work showing that when all available functional asso-
ciation networks are relevant for predicting gene function, a
composite network generated by weighting each data source
equally supports predictions as accurate as those derived
using a composite network generated by an optimal choice of
weights [17,30], but when some of the association networks
are irrelevant, the prediction performance of equal weighting
scheme is degraded [30]. These observations suggest that
heuristic network-weighting methods that can identify and
down-weight irrelevant networks may be as accurate as opti-
mal network weightings. As we show later, it is also important
to be able to identify and down-weight redundant functional
association networks.

The regularized linear regression algorithm that GeneMANIA
uses is, by design, robust to the inclusion of irrelevant and
redundant networks. This property is especially important
when the data sources cannot be carefully controlled - for
example, in a webserver that automatically downloads new
data from web repositories or allows users to contribute their
own data.

To set the network weights, we use ridge regression [31],
which corresponds to finding a vector of network weights, ! =
[!1,..., !d]t, that minimizes the cost function: (t - "!)t(t - "!)
+ (! - !)tS(! - !). Here !i is the weight of the ith network, t is
a vector derived from the initial label of the labeled nodes, "
is a matrix with columns corresponding to individual associ-
ation networks, ! is the mean prior weight vector, and S is a
diagonal precision matrix. When all the diagonal entries of S
are set to zero, we say that the cost function is unregularized
and solving for ! becomes equivalent to unregularized linear
regression. For versions of the GeneMANIA algorithm
designed to be deployed on a webserver, we have limited prior
information about the networks and we set the mean prior
weight of all networks to be equal. We call this the 'equal-
weight' prior. However, when predicting membership in a GO
functional category, we can improve prediction accuracies if
we set the mean prior weight of each network to be the aver-
age of all the weight vectors calculated using unregularized
linear regression on a large number of functional classes in
the same branch of GO. We call this the 'branch-specific'
weight prior (see Materials and methods for details).

Gene function prediction in mouse
To evaluate GeneMANIA, we performed function prediction
using the MouseFunc I benchmark data. To do so, we con-
structed ten association networks from the ten datasets (see
Materials and methods for details) and used the GeneMANIA
network integration and label propagation algorithm to pre-
dict gene function for each function class separately. When
constructing individual association networks, we set the spar-
sity level to S = 50, that is, we kept only the top 50 association
weights (links) for each gene and set the rest to zero. Setting
S = 100 results in better performance on most specific GO

The number of CG iterations and computation time of the GeneMANIA algorithm as a function of number of genesFigure 3
The number of CG iterations and computation time of the GeneMANIA
algorithm as a function of number of genes. Left axis: the number of
conjugate gradient (CG) iterations until convergence as a function of
number of genes in the association networks. Right axis: computation time
of GeneMANIA as a function of number of genes in the association
networks. Experiments were run using ten association networks from the
MouseFunc I benchmark data. The final point on the plot used the full
mouse gene complement (for which data are available), and the other gene
numbers were derived by taking random subsets of the full gene
complement. Distribution is over 100 randomly selected Gene Ontology
(GO) categories. The maximum number of CG iterations observed in any
test was 20 and the maximum computation time was 15 seconds. The
quadratic dependence of computation time on gene number is due to the
quadratic growth in number of non-zero association links in the networks
as a function of gene number (data not shown).

15

16

17

18

co
nj

ug
at

e
gr

ad
ie

nt
 it

er
at

io
ns

1000 5000 8000 15000 21000
0

4

8

12

cp
u

tim
e

(s
ec

)

number of genes

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.6

biological process (BP) classes while it has minimal effect in
other evaluation categories (supplementary Figure 2 in Addi-
tional data file 1).

We follow the same procedure as [15] and compare prediction
accuracies using average area under the receiver operating
characteristic (ROC) curve (AUC) in twelve MouseFunc I
evaluation categories. Briefly, the evaluation classes are cre-
ated by grouping GO categories corresponding to all pairwise
combinations of the three GO branches (BP, cellular compo-
nent [CC], and molecular function [MF]) and four specificity
levels, that is, number of annotations ([3 to 10], [11 to 30], [31
to 100], and [101 to 300]). We report prediction performance
on both the 'test' and the 'novel' benchmarks (see [15] for
details).

We compare GeneMANIA's predictions in the first and sec-
ond rounds of MouseFunc I (GeneMANIAEntry-1 and GeneMA-
NIAEntry-2, respectively) and the version of GeneMANIA
designed to be implemented on a webserver (GeneMANIAWS)
against the best performing methods in MouseFunc I. For
GeneMANIAWS, we assume no knowledge about the source of
the gene list whereas in MouseFunc I the competing methods
were provided with the name of GO category from which each
gene list was derived. Below we discuss the outcome of our
evaluation on the 'test' benchmark and then on the 'novel'
benchmark.

Figure 4 shows the prediction performance of three versions
of GeneMANIA as well as the best performance that was
achieved on the test benchmark; GeneMANIAEntry-1 achieved
the highest prediction performance on all evaluation classes
containing GO categories with more than ten annotated
genes, and GeneMANIAEntry-2 achieved the highest prediction
performance on the categories with ten or fewer annotated
genes. We measure performance by using one minus the AUC
(1 - AUC), so lower values indicate better performance. Gene-
MANIAEntry-2 had significantly lower median 1 - AUC than all
other methods in predicting BP and MF categories with 3 to
10 annotations (p < 0.05, Wilcoxon-Mann-Whitney) while
GeneMANIAEntry1 and GeneMANIAWS had significantly lower
median 1 - AUC compared with GeneMANIAEntry-2 in predict-
ing BP categories with 31 to 100 and 101 to 300 annotations,
CC categories with 101 to 300 annotations, and MF categories
with 31 to 100 annotations.

The reduced performance of GeneMANIAEntry-1 in the catego-
ries with the fewest annotations is likely due to overfitting,
because we used unregularized linear regression to set the
network weights. In GeneMANIAEntry-2, we switched to ridge
regression with the branch-specific weight prior, which is less
prone to overfitting. Note also that GeneMANIAWS, which
uses an equal-weight prior, also has improved performance
on the smaller GO categories.

We suspect that one reason for the drop in prediction per-
formance of GeneMANIAEntry-2 compared with GeneMANI-
AEntry-1 on the larger GO categories in the test benchmark is
because of our definition of negative examples. In our first
entry, we defined as negative examples all genes with any GO
annotation but not one in the category being predicted. In our
second entry, we refined this definition so that the negative
examples for a given category were only those annotated to a
sibling category, that is, one that shared a parent in the GO
hierarchy. Although choosing the genes annotated to sibling
categories of interest as negatives improved prediction per-
formance on novel tasks (Figure 5), it degraded the prediction
performance on the test set. This may due to the reduction in
the number of negative examples. One way to alleviate this
effect is to define a range of label biases between [-1, 0] for
genes that have GO annotations but are not annotated to the
function of interest.

On the novel benchmark, in addition to the ten association
networks, eight month out-of-date annotations for test genes
were also made available. Annotations in other categories of
gene function can be informative for predicting new annota-
tions in a given category (for example [32]); in our second
entry to MouseFunc I, we investigated two ways in which old
annotations may be helpful in predicting new annotations on
the novel benchmark. First, we reasoned that genes previ-
ously annotated in parent categories but not sibling catego-
ries should be considered as potential new positive examples
and as such, as described earlier, we used only genes anno-
tated to sibling categories as negatives. Second, often annota-
tions in one branch of the GO imply annotations in a different
branch. For example, transcription factors (MF annotation)
are located in the nucleus at least some of the time (CC anno-
tation) and a number of transcription factors are involved in
cell cycle regulation (BP category). To include this informa-
tion, we constructed association networks from each branch
of GO (see Materials and methods).

Figure 5 shows the prediction accuracies of three versions of
GeneMANIA as well as the best accuracy obtained for each
evaluation set on the 'novel' MouseFunc I benchmark. For the
evaluation classes containing the GO categories with 3 to 10
or 11 to 30 annotations, GeneMANIA entries still had the low-
est error on the MouseFunc I benchmark, with GeneMANI-
AEntry-2 having significantly smaller median error in five of the
six 'small-sized' evaluation categories (p < 0.05, Wilcoxon-
Mann-Whitney). GeneMANIA did less well in the larger GO
categories, possibly suggesting that we are not making full use
of the older annotations. In contrast to the test benchmark,
here, GeneMANIAEntry-2 improved performance can be
mostly attributed to the choice of negative examples (data not
shown), although the inclusion of the GO networks also
slightly improves the prediction performance (data not
shown).

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.7

Genome Biology 2008, 9:S4

In summary, we observed that employing regularization
when using linear regression to combine multiple networks
results in a drastic improvement in prediction accuracies in
the most specific functional classes. This is because with only
a few positive examples, identifying relevant networks is a
challenging task and prone to over-fitting. One way of allevi-
ating this effect is to estimate the relevancy of each network
based on its average weight on a large number of similar pre-
diction tasks (for example, prediction of functional classes in
the same branch of GO). Second, we have demonstrated that
in the binary classification of genes according to GO classes,
the genes that are used as negative examples have a large
impact on the prediction outcome with label propagation.

Performance of GeneMANIA on the yeast benchmark
Inspired by the performance of GeneMANIA on the Mouse-
Func I benchmark, we compare GeneMANIA's performance

to that of the TSS algorithm and bioPIXIE [14] on yeast data.
To compare GeneMANIA with the TSS algorithm, we used
five yeast functional association networks (from [9]) and 400
yeast GO functional classes that we derived from a 2006 ver-
sion of GO annotations (see Materials and methods for
details). We compare GeneMANIA with the TSS algorithm,
which had previously been shown to be as accurate as an SVM
with optimized network weights while requiring orders of
magnitude less computation time [17], enabling us to run
much more extensive comparisons. We compared GeneMA-
NIA with the bioPIXIE network because it is currently
deployed on a popular website that provides gene function
predictions. For bioPIXIE, we evaluate both the network and
the probabilistic graph search algorithm published with the
bioPIXIE network in comparison with GeneMANIA. Note
that the bioPIXIE network was built using different data
sources, which are not included in the five yeast network

Prediction performance of GeneMANIA on the MouseFunc I test benchmarkFigure 4
Prediction performance of GeneMANIA on the MouseFunc I test benchmark. Prediction performance of the first and second submissions to MouseFunc I
(GeneMANIAEntry-1 and GeneMANIAEntry-2, respectively) as well as the version of the GeneMANIA algorithm we have implemented on the GeneMANIA
webserver (GeneMANIAWS) and the best achieved performance on the MouseFunc I test benchmark. Prediction performance is indicated by mean 1 -
area under the receiver operating characteristic curve (1 - AUC) in the class, error bars show one standard error of the mean. Stars mark the evaluation
classes in which a GeneMANIA entry achieved lowest error on the test benchmark.

3 11 31 101 3 11 31 101 3 11 31 101
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Biological Process Cellular Component Molecular Function

M
ea

n
Er

ro
r (

1−
AU

C
)

MouseFunc winner
GeneMANIAEntry−1

GeneMANIAEntry−2

GeneMANIA webserver

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.8

benchmark, so the reported performance is with regard to the
specific published network, not the Bayesian network algo-
rithm used to derive the network. In addition, to illustrate the
attainable accuracies with additional datasets, we performed
function prediction with GeneMANIA using a 15 yeast bench-
mark data set (GeneMANIA15) that we derived from recent
genomics and proteomics data sources (see Materials and
methods). However, we were unable to use these networks as
input to the TSS algorithm due to the memory requirements
of the algorithm.

Figure 6 shows the prediction performance on the yeast
benchmark on BP and CC evaluation classes (see supplemen-
tary Figure 4 in Additional data file 1 for results on MF func-
tional classes) for the TSS algorithm, bioPIXIE and
GeneMANIA on a variety of input collections of functional

association networks. The comparative performance of
GeneMANIA15 (GM-15WS) to GeneMANIA label propagation
applied to the bioPIXIE network (GM-biPx) and to the
bioPIXIE probabilistic graph search (PGS) algorithm applied
on the same network (PGS-biPx) underlines the value of the
GeneMANIA algorithm for a webserver. Given the bioPIXIE
network as input, GeneMANIA has a significantly (p < 0.05,
Wilcoxon-Mann-Whitney) lower median 1 - AUC than PGS-
biPx in all evaluation classes, showing that using simple heu-
ristics to assign discriminant values leads to a considerable
loss in accuracy. The value of being able to tailor the compos-
ite functional association network to the input seed list is
shown by the comparative performance of GM-biPx and GM-
15; while GM-biPx performs well compared with GM-15 in
predicting the smaller GO-BP categories, for which the
bioPIXIE network was optimized, GM-biPx has much higher

Prediction performance of GeneMANIA on the MouseFunc I novel benchmarkFigure 5
Prediction performance of GeneMANIA on the MouseFunc I novel benchmark. Prediction performance of the first and second submissions to MouseFunc
I (GeneMANIAEntry-1 and GeneMANIAEntry-2, respectively) as well as the version of the GeneMANIA algorithm we have implemented on the GeneMANIA
webserver (GeneMANIAWS) and the best achieved performance on the MouseFunc I novel benchmark. Stars mark the evaluation categories in which
GeneMANIA entries had the best achieved performance on the test benchmark. Bars show mean error (measured as 1 - area under the receiver
operating characteristic curve [1 - AUC]), error bars indicate one standard error.

3 11 31 101 3 11 31 101 3 11 31 101
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Biological Process Cellular Component Molecular Function

M
ea

n
Er

ro
r (

1−
AU

C
)

MouseFunc winner
GeneMANIAEntry−1

GeneMANIAEntry−2

GeneMANIA webserver

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.9

Genome Biology 2008, 9:S4

error, and significantly lower performance (p < 0.05, Wil-
coxon-Mann-Whitney) for the largest GO-BP categories and
GO categories from other branches of the hierarchy that the
bioPIXIE network was not designed to predict. In our tests,
GM-biPx outperforms GM-15 on the smaller GO-BP catego-
ries; however, the performance of GM-biPx is likely overesti-
mated because the test sets used for evaluating GM-biPx are
not independent from the training sets used to build the
bioPIXIE network since we were not able to recover the cross-
validation folds used in [14].

We were not able to compare GeneMANIA with the TSS algo-
rithm on the 15 yeast network benchmark; the TSS algorithm
(as obtained from [33]) run on the 15 yeast networks resulted

in an out of memory error when solving the system of linear
equations when running MATLAB (version 7.4) on a quad-
core MAC desktop with Intel Xeon 2.66 GHz processors and
4 GB of memory. However, when comparing GeneMANIA on
the five yeast networks from [17] (TSS-5 versus GM-5), we see
that GeneMANIA performs as well as or better than TSS;
among the evaluation categories shown in Figure 6, GM-5 has
a significant lower median 1 - AUC than TSS-5 on BP and CC
categories with 31 to 100 and 101 to 300 annotations (p <
0.05, Wilcoxon-Mann-Whitney).

Running time and prediction accuracy
Figure 7 demonstrates the trade-off between computation
time and mean error of GeneMANIA, the TSS algorithm, and

Prediction performance of GeneMANIA on the extended yeast benchmarkFigure 6
Prediction performance of GeneMANIA on the extended yeast benchmark. Prediction performance of GeneMANIA with five yeast networks with equal
weight prior (GM-5WS), 15 yeast networks with equal weight prior (GM-15WS), GeneMANIA with the bioPIXIE network (GM-biPx), and the TSS algorithm
with five yeast networks (TSS-5). Bars show mean error (measured as 1 - area under the receiver operating characteristic curve [1 - AUC]) on 12
evaluation classes based on ontologies (biological process [BP] and cellular component [CC]) and specificity levels of 3 to 10, 11 to 30, 31 to 100, and 101
to 300 annotations. Error bars indicate the standard error in the mean.

3 11 31 101 3 11 31 101
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Annotations

M
ea

n
Er

ro
r (

1−
AU

C
)

GM−15WS

GM−biPx
GM−5WS

TSS−5
PGS−biPx

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.10

the bioPIXIE graph search algorithm on the yeast bench-
mark. GeneMANIA with 15 networks and branch-specific
weight prior achieves the lowest error in yeast and we use it as
a benchmark for comparing the error of other methods. While
PGS-biPx was faster than GM-biPx, its median error (1 - AUC)
was three times higher. We also note that the TSS-5 algorithm
was both slower and, on average, less accurate than GM-5.
The primary cause of this slow down is that the TSS algorithm
runs label propagation more than 50 times more than Gene-
MANIA in order to optimize the network weights.

The effect of redundancy and random networks on
equal weighting
To ensure that the GeneMANIA network integration scheme
is robust to irrelevant and redundant networks, we evaluated
GeneMANIA in the presence of redundant and noisy net-
works. To do so, we constructed 20 redundant yeast networks
by adding a slight amount of noise to the PfamA network
(Gaussian noise with mean zero and standard deviation of
0.025). We also constructed two irrelevant networks by
assigning association weights between 0 and 1, drawn from a
uniform distribution, to a random set of 0.01% of the associ-
ation weights and setting the rest of the associations to zero.
We conducted function prediction with the GeneMANIA net-
work integration scheme and weight scheme in which all the
networks are assigned an equal weight. Figure 8 shows the
results of function prediction with these two strategies on 300
yeast GO categories with 11 to 300 annotations. In the pres-

ence of irrelevant and redundant networks, the performance
of the equal weight scheme is drastically degraded. The mul-
tiple network integration scheme of GeneMANIA detects
these redundant and irrelevant networks and, as a result,
GeneMANIA's performance is not affected.

Discussion and conclusion
We have shown that GeneMANIA is as accurate as, or more so
than, leading gene function prediction algorithms on yeast
and mouse despite requiring, in some cases, orders of magni-
tude less computation time. We achieve the highest accuracy
using a version of our algorithm that requires between 10 and
15 seconds computation time on a modern desktop computer
with slightly optimized MATLAB code. With more careful
optimization, we expect that GeneMANIA will be even faster.
Consequently, we have demonstrated that it is possible to
design a gene function prediction algorithm that performs
on-demand function prediction with most up-to-date annota-
tion list and data sources while achieving the same or better
accuracy as the leading algorithms.

Our algorithm automatically combines multiple input data
sources fast enough to be employed on a web server. With the
availability of such an algorithm, it is no longer necessary to
maintain static databases of gene function predictions that
can quickly become out of date and are restricted to predict-
ing function in pre-defined categories. As proof of this princi-
ple, we have generated a website [34] where users can define
their own function categories by providing a gene list, and
receive predictions in seconds.

Additionally, we have demonstrated that sparsifying data
sources can result in increased prediction accuracy as well as
decreased computation time. This suggests that, in the con-
text of gene function prediction, many of the derived associa-
tions may be uninformative and only a small selection of a
gene's top neighbors are sufficient for accurate function
determination.

Here we have not investigated the possibility of using a gene's
prior annotations to predict new ones; this type of informa-
tion can be useful [32], although it can easily be incorporated
by using it to generate a functional association network, as we
did in our MouseFunc I entry. We have also noticed that, in
some cases, a network representation is not the most efficient
encoding of input data; for example, our yeast gene localiza-
tion dataset has a sparse feature-based representation and a
dense network-based representation. This can be addressed
using techniques proposed in [35], which allows the propaga-
tion of label information on networks where each node is also
associated with a feature vector.

Computation time and prediction accuracyFigure 7
Computation time and prediction accuracy. Bars to the left of the solid
vertical lines show fold increase in error relative to the mean error (as
measured by 1 - area under the receiver operating characteristic curve [1
- AUC]) for the evaluation classes defined in Figure 6 of GeneMANIA with
15 yeast networks using the equal weight priors in Figure 6. Bars to the
right of the solid vertical lines show mean CPU time required to run each
algorithm. The performance of GeneMANIA (GM), TSS, and bioPIXIE
(biPx) are directly compared on the same input. The bars marked as GM-
biPx and PGS-biPx depict the prediction performance of GeneMANIA
label propagation and bioPIXIE probabilistic graph-based search algorithm,
respectively, using the bioPIXIE network as input. TSS and GeneMANIA
are compared using the five yeast network benchmark.

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.11

Genome Biology 2008, 9:S4

Materials and methods
Software
The GeneMANIA prototype webserver is available at [34].

Yeast benchmark datasets
To perform function prediction in yeast with the GeneMANIA
algorithm, we used five yeast functional association networks
(used in [9] and [17] and available from [33]), constructed an
extended yeast benchmark consisting of 15 association net-
works and 400 GO functional classes, and used the bioPIXIE
network (obtained from [36]).

We constructed 15 yeast association networks from various
genomics data sources (supplementary Table 1 in Additional
data file 2). In addition, we also downloaded the GO associa-
tion file from the Saccharomyces Genome Database on (1
June 2006) and obtained a set of 400 functional classes that
we grouped according to their specificity level and GO
branch. In particular, we randomly selected 100 functional

classes from each specificity level (3 to 10, 11 to 30, 31 to 100,
and 101 to 300) and organized them based on their GO
branch. In addition, the 5 yeast network benchmark consists
of 13 Munich Information Center for Protein Sequences
(MIPS) functional classes. We have included the prediction
performance on these functional classes in supplementary
Figures 3 and 5 in Additional data file 1.

In addition to the above, we investigated the prediction per-
formance of GeneMANIA using the bioPIXIE [14] network
(we refer to this method as GeneMANIAbioPIXIE). bioPIXIE is
a composite association network that has been constructed
from 925 referenced data sources. It contains 15,551,081
functional associations between 7,034 yeast genes.

Zhang and coworkers mouse benchmark data
We obtained the mouse tissue expression benchmark data
from [37]. For comparison of GeneMANIA with the bench-

Prediction performance of GeneMANIA in the presence of irrelevant and redundant networksFigure 8
Prediction performance of GeneMANIA in the presence of irrelevant and redundant networks. Cumulative distribution of 1 - area under the receiver
operating characteristic curve (1 - AUC) scores on 300 yeast Gene Ontology (GO) categories using GeneMANIA optimized weights and equal weights in
the presence of redundant and irrelevant networks.

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

GO Categories

Er
ro

r (
1−

AU
C

)

GM−15
GM−15 + redundant
GM−15 + irrelevant
GM−15−equal
GM−15−equal + redundant
GM−15−equal + irrelevant

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.12

mark data from [12], following their experimental frame-
work, we considered 9,499 genes and 992 GO categories.

MouseFunc I benchmark data
We constructed ten association networks from the Mouse-
Func I benchmark data (as detailed below). We used minor
variations of GeneMANIA for our evaluations: GeneMANI-
AEntry-1, GeneMANIAEntry-2, and GeneMANIAWS.

In GeneMANIAEntry-1 we used unregularized linear regression
to combine association networks, and we used all genes with
any GO annotations that are not annotated to the functional
class of interest as negative examples.

In GeneMANIAEntry-2 we used ridge regression to combine
association networks, and we set the prior weight vector !h for
network h to the average weight that network h obtained
when using ordinary linear regression in all predictions from
the same GO branch. We define negative examples for each
class of interest g as those genes that have annotations to any
class that shares a parent with g. In addition, we included
three GO networks that were constructed from three GO
ontologies.

GeneMANIAWS is the same as GeneMANIAEntry-1 except that
we used ridge regression, setting all of the elements of the
mean prior weight vector to 1/d where d is the number of
interaction networks.

Building functional association networks
When constructing association networks, we distinguish two
types of data: binary and continuous valued. In binary data-
sets, for a given feature, all zeros were replaced with log(1 - #)
and ones were replaced with, -log(#), where # is the propor-
tion of examples for which the given feature has a value of 1.
This allows for the emphasis of similarities between genes
that share 'uncommon' features. Subsequently, for both types
of data, we constructed similarity matrices using the Pearson
correlation coefficient to measure pair-wise similarities. To
keep our association networks sparse, for each gene we set all
of its links (association weights), except for its top 50 links, to
zero.

Mouse GO networks
For predicting gene function on the MouseFunc I benchmark,
in addition to the ten association networks that we con-
structed from the genomics and proteomics data, we con-
structed three GO networks. We represented a gene's
annotations to a given branch of GO as a binary vector whose
gth element is set to '1' if the gene was annotated in GO cate-
gory g, or any of the descendants of g in the GO hierarchy, and
is set to '0' otherwise. We constructed one GO network for
each branch of the hierarchy. However, when predicting GO
category g in ontology BP (CC, or MF), we would construct
the BP GO network by not including any annotations in g or
its descendents.

Network normalization
We normalize all our functional association networks and the
composite process-specific network by dividing each entry
Wij, the association between node i and node j, by the square
root of the product of the sum of the elements of row i and the
sum of the elements in column j of the unnormalized net-
work.

Figure of merit for accuracy
We evaluated the performance of GeneMANIA using the
AUC.

ROC is a graphical plot of true positive rate (sensitivity) as a
function of false positive rate (1 - specificity) for a binary clas-
sifier system as its discrimination threshold is varied; a per-
fect classifier would yield an AUC of 1 and a random classifier
yields an AUC of 0.5 [38]. 1 - AUC is a more appropriate meas-
ure because it corresponds to the expected portion of the neg-
atives that are higher than a random positive - while a gain of
0.90 to 0.95 AUC seems negligible, it corresponds to a two-
fold reduction in the expected portion of negatives scoring
higher than a random positive (1 - AUC).

GeneMANIA label propagation algorithm
Here we denote the vector of discriminant values by f, the bias
vector by y, and the matrix derived from the association net-
work by W. We can represent an association network over n
genes by a symmetric matrix W whose non-zero entries indi-
cate the associations in the network. In particular, the (i, j)th

element of W, Wij, is the association between genes i and j,
with Wij = 0 indicating no edge between genes i and j. To
ensure that all associations are non-negative, we set any neg-
ative associations to zero. For each binary classification task,
we have l labeled genes and u unlabeled genes (n = l + u). We
use these labels to specify a bias vector y, where y $ {+1, k, -
1}, indicating that gene i is positive, unlabeled, or negative,
respectively. In the GeneMANIA label propagation algo-
rithm:

where n+ and n- are the numbers of positive and negative
genes, respectively. The discriminant values are computed by
solving the following objective function:

which ensures that the discriminant values of positive and
negative genes remain close to their label bias (first term in
the summation) and the discriminant values of genes that are
associated (genes that have positive wij) are not too different
from each other (second term in the summation). Equation 1
can be written in matrix notation as:

k
n n

n
=

+ − −

f f= − + −∑∑∑argmin () ()f y w f fi i ij i j

jii

2 2
(1)

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.13

Genome Biology 2008, 9:S4

f* = argminf (f - y)t (f - y) + ft Lf

where L = D - W is called the graph Laplacian matrix and D =
diag(di) (that is, D is a diagonal matrix with Dii = di and Dij =
0 if i % j) and di = &jwij. Since the association matrix is sym-
metric, by definition, L is symmetric and semi-definite posi-
tive and equation 2 is a quadratic optimization problem with
a global minimum. In fact, the solution to equation 2 can be
obtained by solving a sparse linear system y = (I - L)f.

GeneMANIA network combination
Given d association networks encoded as matrices W1,.., Wd,
we form a composite network as:

where the vector of network weights, ! = [!1, !2,..., !d], is cus-
tomized to a particular prediction task by choosing it to max-
imize a form of kernel-target alignment [39] between the
composite network and a 'target' network constructed from
the class label vector y.

Specifically, to obtain the weight vector !, we solve the ridge
regression problem:

! = argmin!'("!' - t)t("!' - t) + (!' - t)tS(!' - !)

where each column "h of " constructed from the matrix Wh

by collecting its elements Wij for which either: one of the
genes i or j is labeled positive and the other negative; or both
are labeled positives. Each element of the vector t also corre-
sponds to either a pair of negatively and positively labeled
genes or two positively labeled genes. Elements of t corre-
sponding to a positive and a negative are set to -n+ × n- and
those corresponding to two positives are set to n- × n-, where
n+ and n- are the numbers of positively and negatively labeled
genes, respectively. The same row ordering is used for all "h

and t, so that each row corresponds to a single i, j gene pair.
When solving equation 3, we also include a bias term, !0, by
adding a column of '1's, "0, to " and discard this bias term
when constructing the composite association network. Intui-
tively, we are attempting to choose network weights such that
pairs of positively labeled genes have high similarity, pairs
containing a positive and negative gene have low similarity,
and pairs of negatively labeled genes have no influence in
determining the weights.

Given the prior mean vector ! and precision matrix S, the
solution to equation 3 is:

! = ("t" + S)-1("tt + S!)

where "t indicates the transpose of " In the text, we describe
two different methods to set !, and we specify S by setting all
its elements to zero, except for its diagonal elements, which

we specify by setting Shh = trace(Wh
tWh). If we are solving the

unregularized version of this problem, we simply set all of the
elements of S to zero.

To avoid negative network weights, if after solving for !, !h <
0 for any h > 0, then we set !h = 0, remove "h from ", and
redo the ridge regression. If through this procedure, !h = 0 for
all h > 0, we set !h = 1/d for all h > 0.

The time complexity of this algorithm scales at worst quadrat-
ically in n. Computing equation 3 requires O(n × n+ × d) time
to calculate "t" and the matrix inversion can be done in O(d3)
time.

The TSS algorithm
We downloaded the TSS algorithm from [33]. There are three

parameters to be set: C is the constraint that enforces an

upper-bound on the sum of the network weights (that is,

), C0 enforces and upper-bound on individual net-

work weights (that is, 0 ' !k ' C0), and const is a parameter to

adjust for the class imbalances. In the code provided by [33],

the parameters C and C0 have been previously optimized for

function prediction in the 13 MIPS categories for the five

yeast network input. For the 400 GO category yeast bench-

mark, we set these parameters to their default values (that is,

C0 = 0.4).

bioPIXIE probabilistic graph search algorithm
Given a seed list of positive genes, the probabilistic graph
search algorithm adds two sets of genes to it. The first set con-
tains the n1 genes with the highest total association weight to
the seed list and the second set contains the n2 genes with
highest total association weights to the first set. In [14], the
authors set n1 to be between 10 and 20 and n2 to be 40 - n1. In
our implementation of [14], we set both n1 and n2 to 20. We
chose these two parameters empirically, by comparing sev-
eral settings in the suggested range. Our reported results are
robust to slight variation of these two parameters.

Abbreviations
AUC, area under the ROC curve; BP, biological process; CC,
cellular component; CG, conjugate gradient; GO, Gene Ontol-
ogy; MF, molecular function; MIPS, Munich Information
Center for Protein Sequences; PGS, probabilistic graph
search; ROC, receiver operating characteristic; SVM, support
vector machine; TSS, Tsuda and coworkers [17] algorithm;
ZBLWS, Zhou and coworkers [22] algorithm.

Competing interests
The authors declare that they have no competing interests.

W Wcomb
h

h

h= ∑!

!k
k

C≤∑

Genome Biology 2008, 9:S4

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.14

Authors' contributions
QM conceived of the project. QM, DR, and SM designed the
GeneMANIA algorithm. SM and DWF implemented the Gen-
eMANIA algorithm. DWF implemented the GeneMANIA
webserver. SM collected the data, designed the association
networks, and performed the experiments. CG contributed
code to create association networks. SM and QM wrote the
manuscript. QM supervised the project and provided feed-
back.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 includes supple-
mentary Figures 1 to 5. Additional data file 2 includes supple-
mentary Table 1.
Additional data file 1Supplementary Figures 1 to 5Supplementary Figures 1 to 5.Click here for fileAdditional data file 2Supplementary Table 1Supplementary Table 1.Click here for file

Acknowledgements
SM, DWF, and DR gratefully acknowledge the support from NSERC USRAs
and an operating grant assigned to QM. CG and SM were partially sup-
ported by a Genome Canada grant administered by the Ontario Genomics
Institute.

This article has been published as part of Genome Biology Volume 9 Supple-
ment 1, 2008: Quantitative inference of gene function from diverse large-
scale datasets. The full contents of the supplement are available online at
http://genomebiology.com/supplements/9/S1

References
1. Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression net-

work for global discovery of conserved genetic modules. Sci-
ence 2003, 302:249-255.

2. Zhang LV, King OD, Wong SL, Goldberg DS, Tong AH, Lesage G,
Andrews B, Bussey H, Boone C, Roth FP: Motifs, themes and the-
matic maps of an integrated Saccharomyces cerevisiae inter-
action network. J Biol 2005, 4:6.

3. Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astro-
moff A, Davis RW: Genomic profiling of drug sensitivities via
induced haploinsufficiency. Nat Genet 1999, 21:278-283.

4. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y,
Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, John-
ston M, Fields S, Rothberg JM: A comprehensive analysis of pro-
tein-protein interactions in Saccharomyces cerevisiae. Nature
2000, 403:623-627.

5. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork
P: Comparative assessment of large-scale data sets of pro-
tein-protein interactions. Nature 2002, 417:399-403.

6. Polacco BJ, Babbitt PC: Automated discovery of three-dimen-
sional motifs for protein function annotation. Bioinformatics
2006, 22:723-730.

7. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO:
Assigning protein functions by comparative genome analy-
sis: protein phylogenetic profiles. Proc Natl Acad Sci USA 1999,
96:4285-4288.

8. Hegyi H, Gerstein M: The relationship between protein struc-
ture and function: a comprehensive survey with application
to the yeast genome. J Mol Biol 1999, 288:147-164.

9. Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS: Kernel-
based data fusion and its application to protein function pre-
diction in yeast. Pac Symp Biocomput 2004:300-311.

10. Walker MG, Volkmuth W, Sprinzak E, Hodgson D, Klingler T: Pre-
diction of gene function by genome-scale expression analy-
sis: prostate cancer-associated genes. Genome Res 1999,
9:1198-1203.

11. Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Alt-
schuler SJ: Large-scale prediction of Saccharomyces cerevisiae

gene function using overlapping transcriptional clusters. Nat
Genet 2002, 31:255-265.

12. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, Mitsakakis N,
Mohammad N, Robinson MD, Zirngibl R, Somogyi E, Laurin N,
Eftekharpour E, Sat E, Grigull J, Pan Q, Peng WT, Krogan N, Green-
blatt J, Fehlings M, Kooy D van der, Aubin J, Bruneau BG, Rossant J,
Blencowe BJ, Frey BJ, Hughes TR: The functional landscape of
mouse gene expression. J Biol 2004, 3:21.

13. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D: A
combined algorithm for genome-wide prediction of protein
function. Nature 1999, 402:83-86.

14. Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL,
Dolinski K, Troyanskaya OG: Discovery of biological networks
from diverse functional genomic data. Genome Biol 2005,
6:R114.

15. Peña-Castillo L, Tasan M, Myers CL, Lee H, Joshi T, Zhang C, Guan Y,
Leone M, Pagnani A, Kyu Kim W, Krumpelman C, Tian W, Obozinski
G, Qi Y, Mostafavi S, Ning Lin G, Berriz GF, Gibbons FD, Lanckriet G,
Qiu J, Grant C, Barutcuoglu Z, Hill DP, Warde-Farley D, Grouios C,
Ray D, Blake JA, Deng M, Jordan MI, Noble WS: A critical assess-
ment of Mus musculus gene function prediction using inte-
grated genomic evidence. Genome Biol 2008, 9(Suppl 1):S2.

16. Sharan R, Ulitsky I, Shamir R: Network-based prediction of pro-
tein function. Mol Syst Biol 2007, 3:88.

17. Tsuda K, Shin H, Scholkopf B: Fast protein classification with
multiple networks. Bioinformatics 2005, 21(Suppl 2):ii59-i65.

18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat Genet 2000,
25:25-29.

19. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B,
Snel B, Bork P: STRING 7 - recent developments in the inte-
gration and prediction of protein interactions. Nucleic Acids
Res 2007:D358-D362.

20. Yona G, Dirks W, Rahman S, Lin DM: Effective similarity meas-
ures for expression profiles. Bioinformatics 2006, 22:1616-1622.

21. Wong SL, Zhang LV, Roth FP: Discovering functional relation-
ships: biochemistry versus genetics. Trends Genet 2005,
21:424-427.

22. Zhou D, Bousuet O, Lal T, Weston J, Schoelkopf B: Learning with
local and global consistency. Neural Information Processing Systems
2003 [http://books.nips.cc/papers/files/nips16/NIPS2003_AA41.pdf].

23. Zhu X, Ghahramani Z, Lafferty J: Semi-supervised learning using
Gaussian fields and harmonic functions. In Proceedings of the
Twentieth International Conference on Machine Learning: August 21-24,
2003; Washington, DC, USA Edited by: Fawcett T, Mishra N. Menlo
Park, CA:AAAI Press; 2003:912-919.

24. Vazquez A, Flammini A, Maritan A, Vespignani A: Global protein
function prediction from protein-protein interaction net-
works. Nat Biotechnol 2003, 21:697-700.

25. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M: Whole-proteome
prediction of protein function via graph-theoretic analysis of
interaction maps. Bioinformatics 2005, 21(Suppl 1):i302-310.

26. Deng M, Chen T, Sun F: An integrated probabilistic model for
functional prediction of proteins. J Comput Biol 2004,
11:463-475.

27. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS,
Ares M Jr, Haussler D: Knowledge-based analysis of microarray
gene expression data by using support vector machines. Proc
Natl Acad Sci USA 2000, 97:262-267.

28. Pavlidis P, Weston J, Cai J, Noble WS: Learning gene functional
classifications from multiple data types. J Comput Biol 2002,
9:401-411.

29. Golub GH, Van Loan CF: Matrix Computations Volume 1. 3rd edition.
Baltimore, MD: Johns Hopkins University Press; 1996.

30. Lewis DP, Jebara T, Noble WS: Support vector machine learning
from heterogeneous data: an empirical analysis using pro-
tein sequence and structure. Bioinformatics 2006, 22:2753-2760.

31. Hastie T, Tibshirani R, Friedman JH: The Elements of Statistical Learning:
Data Mining, Inference, and Predictions Berlin/Heidelberg: Springer-Ver-
lag; 2001.

32. King OD, Foulger RE, Dwight SS, White JV, Roth FP: Predicting
gene function from patterns of annotation. Genome Res 2003,
13:896-904.

33. ECCB05 paper supplement [http://www.kyb.tuebingen.mpg.de/
bs/people/tsuda/eccb05.html]

http://www.kyb.tuebingen.mpg.de/bs/people/tsuda/eccb05.html
http://genomebiology.com/supplements/9/S1
http://genomebiology.com/supplements/9/S1
http://books.nips.cc/papers/files/nips16/NIPS2003_AA41.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_AA41.pdf
http://www.kyb.tuebingen.mpg.de/bs/people/tsuda/eccb05.html

http://genomebiology.com/2008/9/S1/S4 Genome Biology 2008, Volume 9, Suppl 1, Article S4 Mostafavi et al. S4.15

Genome Biology 2008, 9:S4

34. GeneMANIA prediction server prototype [http://morris
lab.med.utoronto.ca/prototype]

35. Zhang T, Popescul A, Dom B: Linear prediction model with
graph regularization for web-page categorization. In Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining: August 20-23, 2006 Philadelphia, PA, USA.
New York, NY: ACM; 2006:821-826.

36. bioPixie [http://pixie.princeton.edu/pixie/]
37. The functional landscape of mouse gene expression [http://

hugheslab.ccbr.utoronto.ca/supplementary-data/Zhang/]
38. Gribskov M, Robinson NL: Use of receiver operating character-

istic (ROC) analysis to evaluate sequence matching. Comput
Chem 1996, 20:25-33.

39. Cristianini N, Elisseef A, Shawe-Taylor J, Kndola J: On kernel-target
alignment. Proceedings of Neural Information Processing Systems 2001
[http://books.nips.cc/papers/files/nips14/LT17.pdf].

http://books.nips.cc/papers/files/nips14/LT17.pdf
http://morrislab.med.utoronto.ca/prototype
http://morrislab.med.utoronto.ca/prototype
http://pixie.princeton.edu/pixie/
http://hugheslab.ccbr.utoronto.ca/supplementary-data/Zhang/
http://hugheslab.ccbr.utoronto.ca/supplementary-data/Zhang/
http://books.nips.cc/papers/files/nips14/LT17.pdf

	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Background
	Automated methods for predicting gene and protein function
	Predicting gene function from functional association networks

	Results
	GeneMANIA label propagation
	Efficient implementation of GeneMANIA label propagation for large genomes
	GeneMANIA network integration
	Gene function prediction in mouse
	Performance of GeneMANIA on the yeast benchmark
	Running time and prediction accuracy
	The effect of redundancy and random networks on equal weighting

	Discussion and conclusion
	Materials and methods
	Software
	Yeast benchmark datasets
	Zhang and coworkers mouse benchmark data
	MouseFunc I benchmark data
	Building functional association networks
	Mouse GO networks
	Network normalization
	Figure of merit for accuracy
	GeneMANIA label propagation algorithm
	GeneMANIA network combination
	The TSS algorithm
	bioPIXIE probabilistic graph search algorithm

	Abbreviations
	Competing interests
	Authors' contributions
	Additional data files
	Acknowledgements
	References

